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Abstract

Purpose – This paper aims to present and then resolve the thermodynamic inconsistencies inherent
in the usual Boussinesq model, especially with respect to the second law, and to highlight the effects of
the correction.

Design/methodology/approach – The Boussinesq model (i.e. still assuming fv ¼ 0) is made
thermodynamically consistent by maintaining in the heat equation, primarily the work of pressure
forces, secondarily the heat generated by viscous friction. Numerically speaking, the modifications
are very easy and hardly affect the computing time. However, new non-dimensional parameters arise,
especially the non-dimensional adiabatic temperature gradient, f.

Findings – There are presented and interpreted results of systematic numerical simulations done for
a two-dimensional square differentially-heated cavity filled with air at 300K, with Rayleigh number
ranging from 3,000 to 108 and f ranging from 1023 to 2. All configurations are stationary and the fluid
is far from its critical state. Nevertheless, the pressure-work effect (similar to the piston effect)
enhances the heat transfer while diminishing the convection intensity. The magnitude of this effect is
non-negligible as soon as f reaches 0.02.

Practical implications – The domain where the thermodynamic Boussinesq model must be used
encompasses configurations relevant to building engineering.

Originality/value – Exact second-law analyses can be developed with the so-corrected model.
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Nomenclature
Ar ¼ aspect ratio of the cavity, H/L
cp ¼ heat capacity (Jkg21K21)
g ¼ gravity (ms22)
H ¼ height of the cavity (m)
L ¼ width of the cavity (m)
NI ¼ number of irreversibility
Nu ¼ Nusselt number
NW ¼ non-dimensional work rate
P ¼ pressure (Pa)

Pr ¼ Prandtl number
Q ¼ heat-rate (W)
q ¼ heat-flux-density vector, (Wm22)
qv ¼ heat-rate locally generated by viscous

friction (Wm23)
Ra ¼ Rayleigh number
s ¼ specific entropy ( Jkg21)
t ¼ time (s)
T ¼ temperature (K)
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u * ¼ specific internal energy (Jkg21)
u ¼ non-dimensional horizontal component

of velocity
v ¼ specific volume, 1/r (m3kg21)
v ¼ velocity vector, (ms21)
Vz ¼ vertical component of fluid velocity

(ms21)
w ¼ non-dimensional vertical component of

velocity
x ¼ non-dimensional horizontal position
xc ¼ position of the cold wall, ¼ Ar

21

z ¼ non-dimensional vertical position

Greek symbols
a ¼ thermal diffusivity (m2s21)
b ¼ isobaric expansion coefficient (K21)
DT ¼ temperature difference Th 2 Tc, (K)
f ¼ non-dimensional adiabatic

temperature gradient

F ¼ heat-rate locally dissipated by
friction

u ¼ non-dimensional temperature
r ¼ density (m3kg21)
s ¼ local rate of entropy production

(WK21m23)
S ¼ total rate of entropy production

(WK21)
t ¼ non-dimensional time

Subscripts
0 ¼ reference state
c ¼ cold side
C ¼ Carnot
h ¼ hot side
m ¼ mechanical energy
q ¼ conductive (heat diffusion)
v ¼ viscous
l ¼ purely conductive system

Introduction
More than a century ago, Oberbeck (1879) and Boussinesq (1903) established the famous
Oberbeck-Boussinesq equations, which have been very helpful since then for modeling
buoyancy-driven natural convection, see for instance Bejan (1984) or Gebhart et al. (1988)
among numerous authors. As long as those equations are used for simulations dedicated
to comparison with experimental data or comprehensive studies like the benchmark of
De Vahl Davis (1983), they surely are pertinent. However, the current studies about
natural convection are more and more refined and theoretical, involving second law
analyses, stability analyses, or multiple solutions, so that one may wonder whether
those equations are still adapted to the intended purposes. Several authors (Tritton,
1988; Gray and Giorgini, 1976; Velarde and Perez-Cordon, 1976) showed that the
Boussinesq approximation is valid as long as the temperature difference is sufficiently
limited for the fluid density (and the other thermophysical properties) to be assumed as
uniform and constant. When this condition is not fulfilled, the problem is said
non-Boussinesq; such problems are investigated since the with low-Mach-number
models, e.g. by Paolucci (1982) or more recently Vierendeels et al. (2001). The present
concern is completely different. It originates in the difference between two entropy
balances, that of real natural convection in steady-state, and that of the system simulated
with the usual Boussinesq (UB) equations. Indeed, the two systems (real and UB ones) do
not have same entropy balances. The consequences of this fundamental thermodynamic
inconsistency become visible when the temperature difference is very small, i.e. rather
close to thermodynamic equilibrium (Pons and Le Quéré 2004, 2005a, b). The present
study describes that thermodynamic inconsistency and investigates its consequences.

Natural convection and entropy balance
Non-dimensional quantities are well-known for energies, e.g. the Nu number is the ratio
of the effective heat flux in steady-state or in average and that transferred by the
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purely conductive system (fluid at rest): Nu ¼ Q/Ql. The same purely conductive
system, more exactly its entropy production Sl, can also be the reference for entropy
balances, thus yielding non-dimensional entropy-productions or changes. This
non-dimensionalization straightforwardly leads to an equality that must exist in
steady-state (or in average) between the number of total irreversibility (NI ¼ S/Sl) and
the Nu number, as demonstrated here under:

N I ¼
S

Sl

¼
Q ðT21

c 2 T21
h Þ

QlðT
21
c 2 T21

h Þ
¼

Q

Ql

¼ Nu ð1Þ

In thermally-induced natural convection without diffusion (i.e. in pure substances), the
sources of irreversibility are heat diffusion by conduction and viscous friction.
Non-dimensionalizing the corresponding entropy productions yields the respective
numbers of irreversibility NIq and NIv, that must satisfy the following condition:

N I ¼ N Iq þ N Iv ¼ Nu ð2Þ

Thermodynamic inconsistency in the usual Boussinesq equations
Combining the Gibbs equation (Tds ¼ du* þ pdv), the entropy balance in its local
form [rDs/Dt ¼ 2f(T 21q) þ s ], and the UB assumptions, i.e. dv ¼ ¼ 0 and
(rDu*/Dt ¼ 2fq), results in s ¼ qf(T 21). In other words, the thermodynamic
system described by the UB equations (and called “the UB system” in the following)
recognizes only heat conduction (and not viscous friction) as a source of irreversibility.
Indeed, any UB calculation leads to equality between NIq and Nu, where:

N Iq ¼
1

Ar

Z 1

0

Z xc

0

›u=›x
� �2

þ ›u=›z
� �2

1 þ uDT=T0

� �2
dx dz; and

Nu ¼ 2
1

Ar

Z 1

0

›u

›x

� �
x¼0

dz

ð3Þ

The UB system is thus in contradiction with equation (2). This contradiction with
thermodynamics exists for two reasons. The first one, more visible but less significant,
is the neglect in the heat equation of the heat generated by viscous friction, while the
corresponding loss of kinetic energy is accounted for in the momentum equation.
Thermodynamically speaking, in the UB system some kinetic energy (work) is lost in
viscous friction but not transformed into heat. Remembering the words of Lavoisier:
“Rien ne se perd” (nothing disappears), one deduces that that work lost in friction is
necessarily released as work outside the system. Any exact transformation of work into
work is a reversible process. This analysis shows that viscous friction does not create
entropy in the UB system (when it does in the real world). Notice that losing kinetic
energy is not sufficient for creating entropy in a convective system, irreversibility
actually consists in the transformation of the lost work into heat, regardless of the
magnitude of this heat rate compared to the other ones, conductive or advective.

Another feature shows that the UB systems cannot include viscous friction in its
entropy balance: the number of viscous irreversibility is given by:
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N Iv ¼
1

Ar

bgH

cp

T0

DT

Z 1

0

Z xc

0

2 ›u=›x
� �2

þ ›u=›zþ ›w=›x
� �2

þ2 ›w=›z
� �2

1 þ uDT=T0

� � dx dz; ð4Þ

where appears a parameter, independent from Ar, Pr, and Ra, and which is absent from
the UB problem: bgHT0=ðcpDT Þ: How could a model lying on those three parameters
only describe a phenomenon that involves a fourth one? Tritton (1988) noticed that that
fourth parameter is the adiabatic temperature gradient (bgT0/cp) non-dimensionalized
in the problem framework (by DT/H). As this fourth parameter is very often mentioned
in the following it will be denoted by the symbol f. Bejan (1984), and Gebhart et al.
(1988) as well, mention that f might easily be comparable to one, so that the viscous
irreversibility “is not necessarily negligible” as written in both textbooks.

The second reason for inconsistency between the UB system and thermodynamics is
that the usual heat equation does not contain any term involving transformation between
heat (internal energy) and work within the fluid. This absence raises the question: where
does the UB system find kinetic energy (work) for compensating the continuous viscous
loss? The answer is: if not from the fluid itself, then from outside. In other words, the UB
system somehow continuously receives mechanical energy from outside in order to
compensate a continuous transfer of work (equating the viscous loss) to the outside. After
this simple analysis, the energy transfers of the UB system in steady-state can
schematically be represented as shown in Figure 1: in addition to the two equal heat fluxes
exchanged with the heat sources, this system also exchanges two equal and opposite
fluxes of mechanical energy with the surrounding, and there is absolutely no exchange
between those two kinds of energy. Is it really natural convection?

As a consequence of this whole development the heat equation of the usual
Boussinesq model (i.e. DT=Dt ¼ af2T ) should be questioned.

The thermodynamic Boussinesq model
Oberbeck’s and Boussinesq’s approach consisted in deriving approximations of the
three basic transport equations (mass, momentum and energy) by neglecting terms
of lower orders of magnitude. The same approach is widely used nowadays for
building numerical models. About 46 years ago, Spiegel and Veronis (1960) developed

Figure 1.

Nuh
Heat

+NWm
–NWv

Nuc

Work

Notes: Energy diagram describing thermodynamic system
defined by the usual Boussinesq equations in steady-state.
In this UB system, which exchanges work with its surrounding,
the fluxes of thermal energy (represented at the lower level)
and of kinetic energy (upper level) are completely disconnected.
Nuh = Nuc, and NWm = NWv, in steady-state
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a different approach: they considered the thermodynamic meaning rather than the
orders of magnitude. They obtained what they called “the thermodynamic Boussinesq
model” (denoted as TB in the following). This model can be called Boussinesq, because
the temperature difference is still assumed small enough for neglecting the changes in
fluid density and other thermophysical properties, except for the buoyancy term in the
momentum equation. It is a thermodynamic model, because none of the processes,
which are intrinsic to natural convection are discarded in the heat equation, especially
the work of pressure stress and the heat generated by viscous friction. As a result, the
heat equation in its enthalpic form is:

DT

Dt
¼ a72T þ

qv

rcp
þ

T

cp

› ðr21Þ

›T

� �
P

DP

Dt
ð5Þ

The equation of state considered herein for the fluid is the usual one:
r ¼ r0[1 2 b(T 2 T0)]. As the present study focuses on steady-states, only the
hydrostatic pressure field is considered for the last term on the RHS, which thus finally
transforms into: 2 (bg/cp)TVz. Lastly, taking the cavity height H, the speed
V * ¼ ð

ffiffiffiffiffiffi
Ra

p
a=H Þ, and DT as respective references for distances, velocity, and

temperature difference (T 2 T0), the non-dimensional form of equation (5) is:

Du

Dt
¼

1

Ra1=2
72uþ

bgH

cp

F

Ra 1=2
2 uw

� �
2 fw ð6Þ

Note that this equation does involve the parameter f. The other involved parameter,
bgH/cp, is very small (of the order of 1025), while f is “not necessarily negligible”.
In addition, when the development from the Gibbs equations to the entropy
productions is now derived with equation (5) as heat equation, one correctly finds two
causes of irreversibility: heat diffusion and viscous friction.

The boundary conditions considered herein are extremely common; fixed temperatures
(^0.5) on the vertical walls, adiabatic horizontal walls, no slip on the four walls.

Numerical implementation
The modification of the heat equation is implemented into an initially usual Boussinesq
model already described by Gadoin et al. (2001). The two complementary terms are
treated like the other non-linear terms, i.e. implicitly through linear extrapolation.
The extra CPU-cost of this modification is absolutely negligible. We investigate
herein the square two-dimensional differentially heated cavity filled with air at 300K
(Ar ¼ 1, Pr ¼ 0.71). The grid is regular and staggered with a 256 £ 256 mesh (the
cases with Ra . 108 are calculated with 512 £ 512). The configurations are stationary
(Ra ranges from 3,000 to 108) and f ranges from very small values (f ¼ 1023, i.e. small
cavities where the UB approximation is valid) to large ones (f ¼ 2, for, which the
largest value of H is 3.8 m).

Thermodynamic balances
All the calculations done with the TB model yield Nuh ¼ Nuc, and NWm ¼ NWv

(the rates of work or heat are non-dimensionalized by the heat flux of the purely
conductive system Ql). In addition, the second law balance now agrees with
equation (2): full thermodynamic consistency is obtained.
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The work of pressure forces and its effect
At given Ra number, the heat flux now depends on f, i.e. on the cavity height.
The dependence of Nu on f for 3,000 # Ra # 108 is shown in Figure 2 where the Nu
number calculated with the UB model, NuUB, is taken as reference (Table I). It can be
seen that the actual Nu number (calculated with the TB model) is always larger than
NuUB, the difference can be quite significant when f is of the order of unity. When f is
small compared to one, the relative difference is 0.3 £ f (in other words, if f ¼ 0.1, the
UB model underestimates the Nu number by 3 percent).

The term in DP/Dt in equation (5) describes the work exerted on the fluid by the
hydrostatic pressure field. When non-dimensionalized into equation (6), the (by far) main
part of that work is 2fw, where w is the vertical component of velocity. When the fluid
flows from regions of high pressure (bottom of the cavity) to regions of low pressure (top
of the cavity), this term acts as a heat sink. In other words, when it flows upward close to
the hot wall, the fluid generates work (just like in a turbine) and its internal energy is
reduced by as much. On the other side of the cavity, close to the cold wall, the fluid flows
downward, it receives work (just like in a compressor) and its internal energy increases:
the term 2fw acts as a heat source. Globally, the combination of these two opposite
exchanges between heat and work produces a heat transfer by a process, which operates

Figure 2.
Dependence of the Nu

number on the parameter
f for different Ra numbers

0 0.5 1 1.5 2
φ

1

1.2

1.4

1.6

N
u 

/ N
u U

B

Notes: +: 3000;     : 104;    : 105; O: 106;     : 107; ×: 108. The Nu numbers NuUB 
calculated with the usual Boussinesq model, i.e. with f = 0, are taken as reference 
(values are given in Table I ). The dashed line corresponds to: 
(Nu–NuUB) /NuUB=0.3×f   

Ra 3,000 104 105 106 107 108

Nu 1.504 2.245 4.524 8.841 16.62 30.75

Note: Values of the Nu number calculated with f ¼ 0 (usual Boussinesq model) Table I.
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in parallel to conduction plus advection. We will simply call this process the
pressure-work (PW) effect. This process is similar to the piston effect identified by Onuki
et al. (1990) and Zappoli et al. (1990), but somehow different. Indeed, the piston effect is
due to fluid expansion and contraction, i.e. volume changes; when the fluid specific
volume remains constant, the fluid internal energy changes like cvT. The pressure-work
effect is, in steady-state, due to motion in the hydrostatic pressure-field; when the fluid
remains at constant pressure, the fluid specific enthalpy changes like cpT. Actually,
temperature-, volume- and pressure-changes all three co-exist in natural convection, and
so do the piston and pressure-work (PW) effects. The distinction between them is not
fundamental but it must be done when they are quantified. The proportion of the total
heat transfer, which is due to the PW effect is obtained by subtracting from the total heat
flux that due to conduction plus advection (with cp as fluid heat-capacity) through the
vertical mid-plane (x ¼ 0.5). Non-dimensionalization yields a Nu number due to the PW
effect,NuPW, and the ratio (NuPW/Nu) is the proportion of theNu number, which is due to
PW effect. This proportion is presented as a function of f in Figure 3 for the same Ra
numbers as in Figure 2. It can be noticed that as soon as convection is developed
(Ra $ 104), all the curves practically merge into a single correlation: f is a pertinent
parameter for describing this phenomenon. As expected, the PW effect is quite
significant when f is of the order of unity. Velarde and Perez-Cordon (1976) and Gray
and Giorgini (1976) had already mention that the UB approximation requires f to be
small for being valid. Those authors recommend f to be less than 0.1. However, the
contribution of the PW effect to the total heat transfer in cavities has never been
calculated before, even for small values off. Figure 3 shows that this contribution can be
very significant and as high as 1.2 £ f when f is small. In other words, when f ¼ 0.1,
the PW effect is responsible for 12 percent of the total heat transfer. Compared to the UB
system, the work of pressure forces is also responsible for a strong reduction in
convection intensity, so that the global changes inNunumber shown in Figure 2 actually
result from the combination of a reduced convection with the PW effect.

Figure 3.
Contribution of the
pressure-work effect to the
total heat transfer, as a
function of f and for
different Ra numbers
(same convention as in
Figure 2)
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Notes:  The dashed line corresponds to: NuPW / Nu = 1.2 × f
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From this analysis, the energy transfers occurring in natural convection (and accounted
for in the TB equations) can be represented as shown in Figure 4. The exchanges
between heat and work occurring within the fluid have a double result: first, a net
production of kinetic energy (work) that compensates the loss in viscous friction;
second, a heat transfer by the PW effect, which is larger by several orders of magnitude
than the net produced work.

It must be here emphasized that all those results are obtained for steady-states and a
fluid, which is far away from its critical point. The PW effect does not exist only
in transient evolutions and in near-critical fluids. This statement also applies to the
piston effect.

Validity domains for the different models
Thermodynamically speaking, there is no good reason for neglecting the work exerted
by the hydrostatic pressure field on the flow and the viscous heat generation,
because these are intrinsic components of buoyancy-induced natural convection.
Nevertheless, validity of the UB approximation is a frequent issue. The validity limit
stated by Gray and Giorgini (1976) or Velarde and Perez-Cordon (1976) was f , 0.1.
The results presented in the previous section show that when f ¼ 0.1, a process as
large as 12 percent of the total heat flux is completely discarded by the UB model.
It seems much more reasonable (especially when considering the huge progresses done
in computing technologies during the last 30 years) to position the validity limit around
f ¼ 0.01 or 0.02.

Dimensionless quantities surely are fundamental. It is however interesting to
consider the physical meaning of the different limits mentioned above, either between
the Boussinesq and non-Boussinesq cases, or between the usual and thermodynamic
Boussinesq cases. Figure 5 shows a diagram (DT, H), in log-log axes, established for air
at 300K. Each value of Ra corresponds to a line with negative slope (solid lines); each
value of f corresponds to a line with positive slope (dashed lines). We have separated
the whole domain in three regions. First, on the right, the region of large DT’s, i.e. of
non-Boussinesq configurations where Low-Mach-number models must be used.

Figure 4.

+NWm

Pressure
reduction Nuh Nuc

Th Tc

−NWv

Compression

Notes: Energy diagram describing natural convection
and the thermodynamic Boussinesq system in steady-state
(same conventions as in Figure 1). The large triangles
symbolize the internal energy transformations between
heat and work induced by the pressure forces
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Second, in the upper left corner, the region of large f’s, i.e. of thermodynamic
Boussinesq configurations where the TB model must be used. In between, lies the
validity region of the usual Boussinesq model.

The open ellipse drawn in the latter region shows where are located typical
experimental configurations: cavity size between 10 cm and 2 m; DT between 5 and 20K,
i.e. large enough for being controlled (Salat et al., 2004). It can be seen that
the corresponding values off are very weak (1024-1023), which means that the PW effect
is so small in experiments that it cannot be observed. It also results from this smallness
that the UB model has always been well-adapted for comparing numerical calculations to
experimental data; indeed, the agreement between the UB model and experiments is
generally good. However, this does not prove that the UB model is universal.

The non-Boussinesq problems received some attention during the last years in
literature. For instance, the open circle drawn in this region (H < 7 cm, DT < 700K,
Ra < 107) approximately shows a configuration simulated by Vierendeels et al. (2001).
Compared to UB calculations, the non-Boussinesq effects (non-solenoidal flow,
non-uniform viscosity) change the Nu number by 2-3 percent. What would be
configurations where the pressure-work effect would modify the Nu number as much.
The above results (Figure 2) show that such a change in Nu is obtained when f is lies

Figure 5.
Diagram (H, DT) showing
the different domains of
natural convection
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Non-Boussinesq cases. The region with f larger than 0.02 (and – at fixed Ra – relatively large 
cavities and small ∆T ’s) must be studied with the thermodynamic Boussinesq model. In
between is the region of validity of the usual Boussinesq model    
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around 0.06-0.09. Keeping the same Ra number as above (<107), these values of f
correspond to a DT of 0.1-0.15K applied to a 0.9-1 m high cavity. Yes, although the
causes are very different, the configuration with a DT of 0.1K applied to a 1 m high
enclosure departs from the usual Boussinesq case as much as a DT of 700K applied to a
box of 7 cm. This simple example shows that some configurations looking very
common however present a cavity height large enough for making the PW effect non
negligible. Relatively high cavities can be found in architecture and housing
engineering, so that configurations with a DT of 1K applied to a room of some meters
(see the thick double-arrow in Figure 5) belong to the TB region. This fact, which is
even more true for smaller DT’s, received no attention until now.

Conclusions
The usual Boussinesq equations do not exactly represent buoyancy-induced natural
convection. Indeed, the thermodynamic system actually simulated by those equations
exchanges mechanical energy with its surrounding, so that it recognizes only heat
diffusion as irreversibility. It results that the entropy balances obtained from UB
models are not correct. Thermodynamic consistency is retrieved when both work of
pressure forces and heat generated by viscous friction are accounted for in the heat
equation: this is the thermodynamic Boussinesq model. Numerically, this correction is
very simple and its cost in computing time is negligible. However, it re-introduces into
the system a phenomenon, which is intrinsic to buoyancy-induced natural convection
but unfortunately discarded by the usual Boussinesq equations: the exchanges
between heat and work occurring within the fluid due to flow inside the hydrostatic
pressure field. This pressure-work effect, which induces a heat-transfer in parallel to
advection þ conduction, is controlled by the adiabatic temperature gradient
non-dimensionalized in the problem framework, f ¼ bgHT0/(cpDT). This parameter
f is one of the control parameters of natural convection. Systematic numerical
calculations done with the thermodynamic Boussinesq model show that the magnitude
of the pressure-work effect can be as large as 1.2 £ f, i.e. non negligible as soon as
f . 0.01 or 0.02. Moreover, any theoretical study about buoyancy-induced natural
convection (second law analyses, very probably stability analyses as well) should be
done with the thermodynamic Boussinesq model.
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Pons, M. and Le Quéré, P. (2005b), “An example of entropy balance in natural convection, Part 2:
the thermodynamic Boussinesq equations”,Comptes RendusMecanique, Vol. 333, pp. 133-8.

Salat, J., Xin, S., Joubert, P., Sergent, A., Penot, F. and Le Quéré, P. (2004), “Experimental and
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